Abstraction and Symbolic Representation

Mathematical thinking often begins with the process of abstraction—that is, noticing a similarity between two or more objects or events. Aspects that they have in common, whether concrete or hypothetical, can be represented by symbols such as numbers, letters, other marks, diagrams, geometrical constructions, or even words. Whole numbers are abstractions that represent the size of sets of things and events or the order of things within a set. The circle as a concept is an abstraction derived from human faces, flowers, wheels, or spreading ripples; the letter A may be an abstraction for the surface area of objects of any shape, for the acceleration of all moving objects, or for all objects having some specified property; the symbol + represents a process of addition, whether one is adding apples or oranges, hours, or miles per hour. And abstractions are made not only from concrete objects or processes; they can also be made from other abstractions, such as kinds of numbers (the even numbers, for instance).
Such abstraction enables mathematicians to concentrate on some features of things and relieves them of the need to keep other features continually in mind. As far as mathematics is concerned, it does not matter whether a triangle represents the surface area of a sail or the convergence of two lines of sight on a star; mathematicians can work with either concept in the same way. The resulting economy of effort is very useful—provided that in making an abstraction, care is taken not to ignore features that play a significant role in determining the outcome of the events being studied.

0 comments:

Post a Comment